Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1382
Heti13869
Havi79316
Összes2324641

IP: 3.238.107.166 Unknown - Unknown 2020. november 27. péntek, 12:55

Ki van itt?

Guests : 63 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Országos Középiskolai Matematikaverseny (OKTV) feladatbankjában

Találatok száma laponként:
Keresési szűrő: oktv_20072008_1k1f
 
Találatok száma: 6 ( listázott találatok: 1 ... 6 )

1. találat: OKTV 20072008 I. kategória 1. forduló 1. feladat ( OKTV_20072008_1k1f1f )
Témakör: *Számelmélet

Oldja meg a valós számok halmazás a

$\log_{2x}x+\log_{8x^2}x=0 $

egyenletet!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: OKTV 20072008 I. kategória 1. forduló 2. feladat ( OKTV_20072008_1k1f2f )
Témakör: *Számelmélet

Legyenek $ x $ és $ y $ olyan pozitív egészek, melyek eleget tesznek a $ 4 y^2 - 9 x^2 = 2007 $ egyenletnek. Mennyi az összes összetartozó $ x $ és $ y $ érték szorzatának legnagyobb prímosztója?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: OKTV 20072008 I. kategória 1. forduló 3. feladat ( OKTV_20072008_1k1f3f )
Témakör: *Geometria

Az $ ABCD $ trapéz $ AB $ alapjának hossza háromszorosa a $ CD $ alapnak és az $ AD $ szárnak. Az $ AC $ átló hossza $ 5 $ egység, a $ BC $ szár hossza $ 10 $ egység. Mekkorák az $ ABCD $ trapéz oldalai?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: OKTV 20072008 I. kategória 1. forduló 4. feladat ( OKTV_20072008_1k1f4f )
Témakör: *Számelmélet

Bizonyítsa be, hogy $ 2006^{2007} + 2008^{2006} + 2007 $ osztható $ 7 $ -tel!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: OKTV 20072008 I. kategória 1. forduló 5. feladat ( OKTV_20072008_1k1f5f )
Témakör: *Geometria

Bizonyítsa be, hogy egy tetszőleges háromszög $ a , b, c $ -vel jelölt oldalai között akkor és csak akkor áll fenn az $ a \le b \le c $ egyenlőtlenség, ha az $ s_a $ , $ s_b $ , $ s_c $ -vel jelölt súlyvonalakra fennáll az $ s_a \ge s_b \ge s_c $ egyenlőtlenség!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
6. találat: OKTV 20072008 I. kategória 1. forduló 6. feladat ( OKTV_20072008_1k1f6f )
Témakör: *Kombinatorika

András és Balázs kosárra dobásban méri össze tudását. Annak valószínűsége, hogy András a kosárba talál 0,7; míg Balázs 0,4 valószínűséggel dob kosarat. Egy játszmában mindegyikük egyszer dob.

- Ha András talál, és Balázs nem, akkor András nyer.

- Ha Balázs talál, és András nem, akkor Balázs nyer.

- Minden más esetben a játszma eredménye döntetlen.

Mennyi a valószínűsége annak, hogy két egymás utáni játszma mindegyike döntetlen lesz?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak