Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1400
Heti13887
Havi79334
Összes2324659

IP: 3.238.107.166 Unknown - Unknown 2020. november 27. péntek, 13:05

Ki van itt?

Guests : 61 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Országos Középiskolai Matematikaverseny (OKTV) feladatbankjában

Találatok száma laponként:
Keresési szűrő: oktv_20072008_1k2f
 
Találatok száma: 5 ( listázott találatok: 1 ... 5 )

1. találat: OKTV 20072008 II. kategória 1. forduló 1. feladat ( OKTV_20072008_1k2f1f )
Témakör: *Algebra

Legyen 

$ f(x)=\log_2\left(tg\ x+\dfrac{1}{\cos x} \right)$

és

$g(x)=\dfrac{2^{f(x)}-2^{-f(x)}}{2} $

minden olyan valós $ x $ -re, amelyre a szereplő függvények értelmezhetők. Mennyi $ g\left( \dfrac{\pi}{4 }\right) $ pontos értéke?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: OKTV 20072008 II. kategória 1. forduló 2. feladat ( OKTV_20072008_1k2f2f )
Témakör: *Algebra

Tekintse

$p(x ) = ( 5 x − 2 )\cdot (2 x + 4 ) \cdot ( x − 251 )$

és

$q ( x ) = (a − b + c ) \cdot x^3 + ( 3a + b − c )\cdot x^2 + (a + b + c ) \cdot x + d $

a polinomokat! Határozza meg az $ a $ , $ b $ , $ c $ és $ d $ valós számokat úgy, hogy

$ p(x ) = q(x ) $

minden valós x -re teljesüljön!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: OKTV 20072008 II. kategória 1. forduló 3. feladat ( OKTV_20072008_1k2f3f )
Témakör: *Algebra

Az $ a_n $ és $ b_n $ számsorozatokat az alábbi módon definiáljuk:

$ a_n=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n}$

és

$b_n=n\cdot a_n-a_1-a_2-\ldots-a_n$

Határozza meg $ b_{2008} $ értékét!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: OKTV 20072008 II. kategória 1. forduló 4. feladat ( OKTV_20072008_1k2f4f )
Témakör: *Geometria

Az $ ABC $ hegyesszögű háromszög $ AB $ oldala, mint átmérő fölé rajzolt kör a $ BC $ szakaszt a $ P $ , az $ AC $ szakaszt a $ Q $ pontban metszi. Legyenek a $ P $ és a $ Q $ pontokból az $ AB $ -re bocsátott merőlegesek talppontjai $ X $ és $ Y $

$\dfrac{PX}{QY }=\dfrac{b^2\cdot (a^2+c^2-b^2)}{a^2\cdot (b^2+c^2-a^2) } $

Bizonyítsa be, hogy ahol $ a, b, c $ az $ ABC $ háromszög oldalhosszait jelentik!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: OKTV 20072008 II. kategória 1. forduló 5. feladat ( OKTV_20072008_1k2f5f )
Témakör: *Algebra

Oldja meg az egész számok halmazán a következő egyenletet, ha $ p $ pozitív prímszám:

$ \sqrt{ x^2 - 2 x - 3 - p^2 } + \sqrt{ x^2 - 2 x - 3 + p^2 } = p^2 $

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak