Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai346
Heti2955
Havi29880
Összes3882090

IP: 3.229.117.123 Unknown - Unknown 2022. augusztus 16. kedd, 03:44

Ki van itt?

Guests : 35 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20132014_h2k1f
 
Találatok száma: 5 (listázott találatok: 1 ... 5)

1. találat: ARANYD 2013/2014 Haladó II. kategória 1. forduló 1. feladat
Témakör: *Számelmélet   (Azonosító: AD_20132014_h2k1f1f )

Melyik az a legkisebb 28-cal osztható pozitív szám, amelynek a 10-es számrendszerbeli alakja 28-ra végződik, és számjegyeinek összege 28?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2013/2014 Haladó II. kategória 1. forduló 2. feladat
Témakör: *Algebra   (Azonosító: AD_20132014_h2k1f2f )

Oldjuk meg a valós számok halmazán az alábbi egyenletet:

$(x-5)(x-6)(x-7)(x-8)=120$

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2013/2014 Haladó II. kategória 1. forduló 3. feladat
Témakör: *Geometria   (Azonosító: AD_20132014_h2k1f3f )

Az ABC háromszög AB oldalának A-n túli meghosszabbításán felvettük a P pontot, a BC oldal B-n túli meghosszabbításán az R pontot, végül az AC oldal A-n túli meghosszabbításán a Q pontot úgy, hogy AP = AB, CB = BR és CA = AQ. Mennyi a PQR háromszög területe, ha az ABC háromszögé $ 100\ cm^2$?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2013/2014 Haladó II. kategória 1. forduló 4. feladat
Témakör: *Számelmélet   (Azonosító: AD_20132014_h2k1f4f )

Osztható-e 81-gyel a 81 darab egyesből álló szám?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: ARANYD 2013/2014 Haladó II. kategória 1. forduló 5. feladat
Témakör: *Kombinatorika   (Azonosító: AD_20132014_h2k1f5f )

Egy 2013x2013 méretű táblázat minden mezőjébe az 1-től 2013-ig terjedő egész számok valamelyikét írtuk be úgy, hogy semelyik sorba nem kerültek egyenlő számok, és a táblázat szimmetrikus lett az egyik átlójára. Bizonyítsuk be, hogy ekkor ebben az átlóban sem fordulnak elő egyenlő számok.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

HivatalosHonlap Matkonyv InformatikaPortal KemiaPortal  
FizikaPortal KulturtortenetiEnciklopedia AlsosPortal TortenelemFilozofia
BiologiaPortal BiologiaPortal MagyarPortal MagyarPortal
  BiologiaPortal MagyarPortal  

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak