Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1646
Heti1646
Havi57371
Összes3045905

IP: 34.239.160.86 Unknown - Unknown 2021. szeptember 20. hétfő, 13:04

Ki van itt?

Guests : 39 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20132014_h3k1f
 
Találatok száma: 5 (listázott találatok: 1 ... 5)

1. találat: ARANYD 2013/2014 Haladó III. kategória 1. forduló 1. feladat
Témakör: *Algebra   (Azonosító: AD_20132014_h3k1f1f )

Legyenek a, b, c és d olyan valós számok, amelyekre $ab = 1$ és $ac+bd = 2$. Bizonyítsuk be, hogy $cd \le 1$.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2013/2014 Haladó III. kategória 1. forduló 2. feladat
Témakör: *Kombinatorika   (Azonosító: AD_20132014_h3k1f2f )

Egy bizottság 40-szer ülésezett. Mindegyik ülésen 10 fő volt jelen. A bizottság bármelyik 2 tagja legfeljebb egy ülésen volt együtt. Bizonyítsuk be, hogy a bizottság legalább 64 tagból áll!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2013/2014 Haladó III. kategória 1. forduló 3. feladat
Témakör: *Algebra   (Azonosító: AD_20132014_h3k1f3f )

Melyek azok a p pozitív prímszámok, amelyekre a

$p+1=2x^2$

$p^2+1=2y^2$

egyenletrendszernek van egész megoldása?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2013/2014 Haladó III. kategória 1. forduló 4. feladat
Témakör: *Geometria   (Azonosító: AD_20132014_h3k1f4f )

Legyen a P pont az ABC egyenlő szárú derékszögű háromszög AB átfogójának tetszőleges pontja. A P pont merőleges vetülete AC-n az R, BC-n a Q pont. Bizonyítsuk be, hogy

a) Az RQ szakaszok felezőmerőlegesei egy ponton mennek át;

b) P-ből az RQ szakaszra bocsátott merőlegesek is egy ponton mennek át!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: ARANYD 2013/2014 Haladó III. kategória 1. forduló 5. feladat
Témakör: *Kombinatorika   (Azonosító: AD_20132014_h3k1f5f )

Egy nxn-es tábla egyik mezőjén áll egy bábu. Egy lépésben mozoghatunk egyet fel, vagy egyet jobbra, vagy átlósan balra lefele egyet. Lehetséges-e, hogy a táblát úgy járjuk be, hogy minden mezőt pontosan egyszer érintünk, és végül a kiindulási mezőtől eggyel jobbra érkezünk meg?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak