Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai313
Heti2922
Havi29847
Összes3882057

IP: 3.229.117.123 Unknown - Unknown 2022. augusztus 16. kedd, 03:25

Ki van itt?

Guests : 37 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20142015_k1k2f
 
Találatok száma: 5 (listázott találatok: 1 ... 5)

1. találat: ARANYD 2014/2015 Kezdő I. kategória és II. kategória 2. forduló, III. kategória 1. forduló 1. feladat
Témakör: *Egyenlet (egyenlőtlenség)   (Azonosító: AD_20142015_k1k2f1f, AD_20142015_k2k2f1f, AD_20142015_k3k1f1f )

Mely x és y valós számokra teljesül a következő egyenlőtlenség:

$x+y+xy\ge x^2+y^2+1$

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2014/2015 Kezdő I. kategória és II. kategória 2. forduló, III. kategória 1. forduló 2. feladat
Témakör: *Geometria (terület)   (Azonosító: AD_20142015_k1k2f2f, AD_20142015_k2k2f2f, AD_20142015_k3k1f2f )

Az ABCD szimmetrikus trapéz hosszabbik alapja AB = 3 cm hosszú. A BC átmérőjű kör átmegy az átlók metszéspontján és az AB alap B-hez legközelebbi negyedelőpontján. Mekkora a trapéz területe? 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2014/2015 Kezdő I. kategória és II. kategória 2. forduló, III. kategória 1. forduló 3. feladat
Témakör: *Számelmélet (LNKO)   (Azonosító: AD_20142015_k1k2f3f, AD_20142015_k2k2f3f, AD_20142015_k3k1f3f )

Jelölje (a; b) az a és b pozitív egész számok legnagyobb közös osztóját. Mennyi az alábbi 2015-tagú összeg értéke:

$ (1; 2015) + (2; 2015) + (3; 2015) + . . . + (2014; 2015) + (2015; 2015)?$



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2014/2015 Kezdő I. kategória és II. kategória 2. forduló, III. kategória 1. forduló 4. feladat
Témakör: *Számelmélet (algebra)   (Azonosító: AD_20142015_k1k2f4f, AD_20142015_k2k2f4f, AD_20142015_k3k1f4f )

Egy különböző pozitív egész számokból álló háromszög alakú számtáblázatot „érdekesnek” nevezünk, ha bármely nem a felső sorban elhelyezkedő elemére igaz, hogy az előállítható a közvetlenül felette elhelyezkedő két szám hányadosaként. Pl. az alábbi 3-szintes táblázat „érdekes”:

7 42 14
 6 3 
  2  

Határozzuk meg azt a legkisebb pozitív egész számot, amely előfordulhat egy 4-szintes „érdekes” számtáblázat legnagyobb elemeként.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: ARANYD 2014/2015 Kezdő I. kategória és II. kategória 2. forduló, III. kategória 1. forduló 5. feladat
Témakör: *Algebra (egyenlőtlenség)   (Azonosító: AD_20142015_k1k2f5f, AD_20142015_k2k2f5f, AD_20142015_k3k1f5f )

Legfeljebb mekkora lehet az |a|+|b|+|c| kifejezés értéke, ha minden $-1\le x \le 1$ esetén

$\left |ax^2+bx+c\right |\le 100$



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

HivatalosHonlap Matkonyv InformatikaPortal KemiaPortal  
FizikaPortal KulturtortenetiEnciklopedia AlsosPortal TortenelemFilozofia
BiologiaPortal BiologiaPortal MagyarPortal MagyarPortal
  BiologiaPortal MagyarPortal  

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak