Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1735
Heti1735
Havi57460
Összes3045994

IP: 34.239.160.86 Unknown - Unknown 2021. szeptember 20. hétfő, 14:04

Ki van itt?

Guests : 44 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20152016_h1k1f
 
Találatok száma: 5 (listázott találatok: 1 ... 5)

1. találat: ARANYD 2015/2016 Haladó I. kategória 1. forduló 1. feladat
Témakör: *Számelmélet (oszthatóság)   (Azonosító: AD_20152016_h1k1f1f )

Hány olyan 45-tel osztható $\overline{abcba}$ alakú ötjegyú szám van, ahol a, b és c különböző számjegyeket jelölnek?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2015/2016 Haladó I. kategória 1. forduló 2. feladat
Témakör: *Számelmélet (koordinátarendszer)   (Azonosító: AD_20152016_h1k1f2f )

Az $y\ge0$ félsíknak hány olyan rácspontja van, amelyeknek a koordinátái kielégítik az alábbi egyenloséget?

$x^2+3y=40$

(Rácspont a koordináta-rendszer olyan pontja, melynek mindkét koordinátája egész szám.)



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2015/2016 Haladó I. kategória 1. forduló 3. feladat
Témakör: *Algebra (másodfokú)   (Azonosító: AD_20152016_h1k1f3f )

Határozzuk meg azon a és b valós számokat, amelyekre igaz, hogy a és b is gyöke az x2 + ax + b = 0 egyenletnek!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2015/2016 Haladó I. kategória 1. forduló 4. feladat
Témakör: *Geometria (egész szám)   (Azonosító: AD_20152016_h1k1f4f )

Két, egy síkban lévo, egymást metsző kör középpontjainak távolsága 12 egység. Mindkét kör sugarának hossza egész szám. A metszéspontjukat összekötő egyenes a középpontjaik által meghatározott szakaszt 1 : 2 arányban osztja. Mekkorák a körök sugarai?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: ARANYD 2015/2016 Haladó I. kategória 1. forduló 5. feladat
Témakör: *Algebra (egyenletrendszer)   (Azonosító: AD_20152016_h1k1f5f )

Hány rendezett (x, y, z) valós számhármas megoldása van az alábbi egyenletrendszernek:

 

$\begin{cases}x+y+z=11\\ x^2+2y^2+3 z^2=66\end{cases}$

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak