Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1707
Heti1707
Havi57432
Összes3045966

IP: 34.239.160.86 Unknown - Unknown 2021. szeptember 20. hétfő, 13:48

Ki van itt?

Guests : 50 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20152016_h2k2f
 
Találatok száma: 4 (listázott találatok: 1 ... 4)

1. találat: ARANYD 2015/2016 Haladó II. kategória 2. forduló 1. feladat
Témakör: *Algebra (két ismeretlen, egyenlőtlenség)   (Azonosító: AD_20152016_h2k2f1f )

Tegyük fel, hogy p és q pozitív egészek, továbbá p > q. Bizonyítsuk be, hogy az $ 1+\sqrt{2}$ a $\dfrac{p}{q}$ és a $\dfrac{p+q}{p-q}$ közé esik.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2015/2016 Haladó II. kategória 2. forduló 2. feladat
Témakör: *Geometria (Pitagorasz, kör)   (Azonosító: AD_20152016_h2k2f2f )

Két, egymást nem tartalmazó, közös ponttal nem rendelkező kör közös szimmetriatengelye a köröket rendre az A, B, C, D pontokban metszi. Mutassuk meg, hogy a közös külső illetve belső érintőszakaszok felírhatók két-két olyan szakasz mértani közepeként, amelyek végpontjai az A, B, C, D pontok közül valók!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2015/2016 Haladó II. kategória 2. forduló 3. feladat
Témakör: *Kombinatorika (halmaz)   (Azonosító: AD_20152016_h2k2f3f )

Egy halmaz elemei olyan pozitív egész számok, amelyek oszthatóak az 5, 11, 23, 31 prímszámok mindegyikével, de más prímszámokkal nem. A halmaz bármely két elemének a szorzata nem négyzetszám. Mennyi az ilyen halmazok elemszámának maximuma?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2015/2016 Haladó II. kategória 2. forduló 4. feladat
Témakör: *Algebra (egyenlőtlenség)   (Azonosító: AD_20152016_h2k2f4f )

Oldjuk meg a valós számok körében a következő egyenletet:;

$\sqrt{x_1-1^2}+2\sqrt{x_2-2^2}+\ldots+2016\sqrt{x_{2016}-2016^2}=\dfrac{x_1+x_2+\ldots+x_{2016}}{2}$

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak