Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1694
Heti1694
Havi57419
Összes3045953

IP: 34.239.160.86 Unknown - Unknown 2021. szeptember 20. hétfő, 13:40

Ki van itt?

Guests : 34 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Arany Dániel Matematikaverseny (AranyD)

Találatok száma laponként:
Keresési szűrő: ad_20202021_k2k1f
 
Találatok száma: 4 (listázott találatok: 1 ... 4)

1. találat: ARANYD 2020/2021 Kezdő I. kategória és II. kategória 1. forduló 1. feladat
Témakör: *Algebra   (Azonosító: AD_20202021_k1k1f1f, AD_20202021_k2k1f1f )

Hányféle olyan háromjegyű szám létezik, amelyben a számjegyek összege és szorzata egyenlő?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2020/2021 Kezdő I. kategória és II. kategória 1. forduló 2. feladat
Témakör: *Számelmélet   (Azonosító: AD_20202021_k1k1f2f, AD_20202021_k2k1f2f )

Melyik az a legkisebb pozitív egész $ n $ szám, amelyre igaz, hogy $ n $ darab számot kiválasztva az első 2020 pozitív egész szám közül, biztosan lesz köztük kettő, amelyek különbsége 4?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2020/2021 Kezdő I. kategória és II. kategória 1. forduló 3. feladat
Témakör: *Geometria   (Azonosító: AD_20202021_k1k1f3f, AD_20202021_k2k1f3f )

Egy szög csúcsa az $ A $ pont, szárai $ s_1 $ és $ s_2 $. Felvesszük a szög $ s_1 $ szárán a $ B $, $ C $, az $ s_2 $ szárán a $ D $,  $ E $ pontokat úgy, hogy $ AB = BD = DC = CE = EA $. Hány fokos a szög?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2020/2021 Kezdő I. kategória és II. kategória 1. forduló 4. feladat
Témakör: *Számelmélet   (Azonosító: AD_20202021_k1k1f4f, AD_20202021_k2k1f4f )

Adjuk meg az összes olyan $ n $ pozitív egész számot, amelyre teljesül, hogy ha az $ n $, $ n + 4 $ és $ n + 8 $ számok pozitív osztóinak számát összeadjuk, hatot kapunk eredményül. (Például $ n = 10 $ esetén a $ 10 $; $ 14 $; $ 18 $ számhármasnál az osztók számának összege $ 4 + 4 + 6 = 14 $.)



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak