Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai2663
Heti6047
Havi71494
Összes2316819

IP: 18.234.255.5 Unknown - Unknown 2020. november 24. kedd, 22:41

Ki van itt?

Guests : 96 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Országos Középiskolai Matematikaverseny (OKTV) feladatbankjában

Találatok száma laponként:
Keresési szűrő: oktv_20082009_1k1f
 
Találatok száma: 5 ( listázott találatok: 1 ... 5 )

1. találat: OKTV 2008/2009 I. kategória 1. forduló 1. feladat ( OKTV_20082009_1k1f1f )
Témakör: *Geometria

Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! goldás:



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: OKTV 2008/2009 I. kategória 1. forduló 2. feladat ( OKTV_20082009_1k1f2f )
Témakör: *Algebra

Legyenek aza, b, c, dszámok pozitív valós számok. Igazolja, hogy

$ \sqrt{ a \cdot b } + \sqrt{ c \cdot d }\le (\sqrt{ a + d ) \cdot ( b + c ) }! $

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: OKTV 2008/2009 I. kategória 1. forduló 3. feladat ( OKTV_20082009_1k1f3f )
Témakör: *Algebra

Ha az $ x $, $ y $ , $ z $ valós számok eleget tesznek az $ x + 3 y + 5 z = 200 $ és az $ x + 4 y + 7 z = 225 $ egyenleteknek, akkor mennyi a $ K = x + y + z $ kifejezés értéke?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: OKTV 2008/2009 I. kategória 1. forduló 4. feladat ( OKTV_20082009_1k1f4f )
Témakör: *Algebra

Oldja meg a valós számok halmazán az $ [x ]= 2008 \left\{ x \right\} $ egyenletet! ( [x ] az x valós szám egészrésze, azaz az x -nél nem nagyobb egész számok közül a legnagyobb, { x} pedig az x valós szám törtrésze, azaz { x} = x − [x ] )



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: OKTV 2008/2009 I. kategória 1. forduló 4. feladat ( OKTV_20082009_1k1f5f )
Témakör: *Geometria

Az $ ABC $ háromszög $ AC $ oldalán az $ E $ belső pont úgy helyezkedik el, hogy $ EC = AB $ . Legyen $ F $ a $ BC $, $ M $ pedig az $ AE $ szakasz felezőpontja. Határozzuk meg az $ ABC $ háromszög $ A $ csúcsánál levő belső szögét, ha $ FME\sphericalangle = 18^\circ $ !



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak